Report an accessibility problem

Learn about facilitating predictive analytics in health care in this invited talk hosted by Hanghang Tong.

Machine learning for decision making in health care
Presented by Zoran Obradovic, Temple University

Monday, December 10, 2018
10 a.m.
Brickyard (BYENG) 210, Tempe campus [map]

Abstract

An overview of our ongoing projects aimed to facilitate predictive analytics in healthcare will be presented in this talk. Challenges and the proposed solutions will be discussed related to structured regression on multilayer networks, recovering network connectivity, modeling positive and negative influences, uncertainty propagation and effective integration of domain knowledge and big data. The algorithms will be evaluated in the context of applications related to exploiting information extracted from electronic health records for identifying resources a patient would need for triage systems in emergency departments, estimating hospitalization cost, predicting admission and mortality rate for high impact diseases, identifying disease relationships, discovering gene-disease interactions and assessing tolerance to viral infections.

About the speaker

Zoran Obradovic is an academician at the Academia Europaea (the Academy of Europe) and a foreign academician at the Serbian Academy of Sciences and Arts. He is an L.H. Carnell Professor of Data Analytics at Temple University, professor in the Department of Computer and Information Sciences with a secondary appointment in the Department of Statistical Science and is the director of the Center for Data Analytics and Biomedical Informatics. His research interests include data science and complex networks in decision support systems.

Obradovic is the editor-in-chief at the Big Data journal and the steering committee co-chair for the SIAM Data Mining conference. He is also the editorial board member at 13 journals and was the general chair, program chair or track chair for 11 international conferences. He has published more than 370 articles and is cited more than 22,000 times (H-index 54).

Comments are closed.

  • Features

  • Follow us on Twitter

  • Fulton Engineering on Social Media

  • In the Loop

    In the Loop is an online news site for the faculty and staff of the Fulton Schools of Engineering at ASU.